115 research outputs found

    Hotspots: Modelling capacity for vector-borne disease risk analysis in New Zealand: A case study of Ochlerotatus camptorhynchus incursions in New Zealand

    Get PDF
    This Hotspots case study of Oc. camptorhynchus in New Zealand forms part of the wider aims and objectives of the Hotspots project. The overall aims of the case study were: 1. To evaluate the performance of the Hotspots model as a risk analysis tool for Oc. camptorhynchus; 2. To use and learn from the experience of the various incursions of Oc. camptorhynchus in order to critically assess and improve the model; 3. To gain experience in using the model for risk analysis for Oc. camptorhynchus in particular, and in so doing, also develop experience applicable to risk analysis for other vectors of concern (Table 1); and, 4. To develop an experience and knowledge base as well as guidelines for future use of the model in its various applications related to biosecurity, surveillance and risk assessment and management

    Hotspots: Exotic mosquito risk profiles for New Zealand

    Get PDF
    This document reports the main findings of the first systematic, spatial analyses of risks to New Zealand associated with exotic mosquitoes of current public health concern

    Decision-theoretic planning with non-Markovian rewards

    No full text
    A decision process in which rewards depend on history rather than merely on the current state is called a decision process with non-Markovian rewards (NMRDP). In decision-theoretic planning, where many desirable behaviours are more naturally expressed a

    An ultrastructural investigation of tumors undergoing regression mediated by immunotherapy

    Get PDF
    While immunotherapy employing chimeric antigen receptor (CAR) T cells can be effective against a variety of tumor types, little is known about what happens within the tumor at an ultrastructural level during tumor regression. Here, we used transmission electron microscopy to investigate morphologic and cellular features of tumors responding to immunotherapy composed of adoptive transfer of dual-specific CAR T cells and a vaccine, supported by preconditioning irradiation and interleukin-2. Tumors responded rapidly, and large areas of cell death were apparent by 4 days after treatment. The pleomorphic and metabolically active nature of tumor cells and phagocytic activity of macrophages were apparent in electron microscopic images of tumors prior to treatment. Following treatment, morphologic features of various types of tumor cell death were observed, including apoptosis, paraptosis and necrosis. Large numbers of lipid droplets were evident in tumor cells undergoing apoptosis. Macrophages were the predominant leukocyte type infiltrating tumors before treatment. Macrophages decreased in frequency and number after treatment, whereas an increasing accumulation of neutrophils and T lymphocytes was observed following treatment. Phagocytic activity of macrophages and neutrophils was apparent, while T cells could be observed in close association with tumor cells with potential immunological synapses present. These observations highlight the cellular composition and ultrastructural appearance of tumors undergoing regression mediated by immunotherapy

    People Efficiently Explore the Solution Space of the Computationally Intractable Traveling Salesman Problem to Find Near-Optimal Tours

    Get PDF
    Humans need to solve computationally intractable problems such as visual search, categorization, and simultaneous learning and acting, yet an increasing body of evidence suggests that their solutions to instantiations of these problems are near optimal. Computational complexity advances an explanation to this apparent paradox: (1) only a small portion of instances of such problems are actually hard, and (2) successful heuristics exploit structural properties of the typical instance to selectively improve parts that are likely to be sub-optimal. We hypothesize that these two ideas largely account for the good performance of humans on computationally hard problems. We tested part of this hypothesis by studying the solutions of 28 participants to 28 instances of the Euclidean Traveling Salesman Problem (TSP). Participants were provided feedback on the cost of their solutions and were allowed unlimited solution attempts (trials). We found a significant improvement between the first and last trials and that solutions are significantly different from random tours that follow the convex hull and do not have self-crossings. More importantly, we found that participants modified their current better solutions in such a way that edges belonging to the optimal solution (“good” edges) were significantly more likely to stay than other edges (“bad” edges), a hallmark of structural exploitation. We found, however, that more trials harmed the participants' ability to tell good from bad edges, suggesting that after too many trials the participants “ran out of ideas.” In sum, we provide the first demonstration of significant performance improvement on the TSP under repetition and feedback and evidence that human problem-solving may exploit the structure of hard problems paralleling behavior of state-of-the-art heuristics

    Focal adhesion is associated with lithium response in bipolar disorder: evidence from a network-based multi-omics analysis

    Get PDF
    Lithium (Li) is one of the most effective drugs for treating bipolar disorder (BD), however, there is presently no way to predict response to guide treatment. The aim of this study is to identify functional genes and pathways that distinguish BD Li responders (LR) from BD Li non-responders (NR). An initial Pharmacogenomics of Bipolar Disorder study (PGBD) GWAS of lithium response did not provide any significant results. As a result, we then employed network-based integrative analysis of transcriptomic and genomic data. In transcriptomic study of iPSC-derived neurons, 41 significantly differentially expressed (DE) genes were identified in LR vs NR regardless of lithium exposure. In the PGBD, post-GWAS gene prioritization using the GWA-boosting (GWAB) approach identified 1119 candidate genes. Following DE-derived network propagation, there was a highly significant overlap of genes between the top 500- and top 2000-proximal gene networks and the GWAB gene list (Phypergeometric = 1.28E–09 and 4.10E–18, respectively). Functional enrichment analyses of the top 500 proximal network genes identified focal adhesion and the extracellular matrix (ECM) as the most significant functions. Our findings suggest that the difference between LR and NR was a much greater effect than that of lithium. The direct impact of dysregulation of focal adhesion on axon guidance and neuronal circuits could underpin mechanisms of response to lithium, as well as underlying BD. It also highlights the power of integrative multi-omics analysis of transcriptomic and genomic profiling to gain molecular insights into lithium response in BD.publishedVersio

    Dual-specific chimeric antigen receptor T cells and an indirect vaccine eradicate a variety of large solid tumors in an immunocompetent, self-antigen setting

    Get PDF
    Purpose: While adoptive transfer of T cells bearing a chimeric antigen receptor (CAR) can eliminate substantial burdens of some leukemias, the ultimate challenge remains the eradication of large solid tumors for most cancers. We aimed to develop an immunotherapy approach effective against large tumors in an immunocompetent, self-antigen preclinical mouse model. Experimental Design: In this study, we generated dual-specific T cells expressing both a CAR specific for Her2 and a TCR specific for the melanocyte protein (gp100). We used a regimen of adoptive cell transfer incorporating vaccination (ACTIV), with recombinant vaccinia virus expressing gp100, to treat a range of tumors including orthotopic breast tumors and large liver tumors. Results: ACTIV therapy induced durable complete remission of a variety of Her2+ tumors, some in excess of 150 mm2, in immunocompetent mice expressing Her2 in normal tissues, including the breast and brain. Vaccinia virus induced extensive proliferation of T cells, leading to massive infiltration of T cells into tumors. Durable tumor responses required the chemokine receptor CXCR3 and exogenous IL-2, but were independent of IFN-gamma. Mice were resistant to tumor rechallenge, indicating immune memory involving epitope spreading. Evidence of limited neurologic toxicity was observed, associated with infiltration of cerebellum by T cells, but was only transient. Conclusions: This study supports a view that it is possible to design a highly effective combination immunotherapy for solid cancers, with acceptable transient toxicity, even when the target antigen is also expressed in vital tissuesThis work was supported by grants from the Cancer Council of Victoria, Australia (1066554), The Peter MacCallum Cancer Center Foundation, and the National Health and Medical Research Council (NHMRC) of Australia (1103352). C.Y. Slaney and P. Beavis were supported by Postdoctoral Fellowships from the National Breast Cancer Foundation of Australia. A.J. Davenport and S. Mardiana received Postgraduate Scholarships from the Fight Cancer Foundation and University of Melbourne respectively. R.W. Johnstone and M.J. Smyth were supported by Senior Principal Research Fellowships from the NHMRC. M.H. Kershaw and P.K. Darcy were supported by Senior Research Fellowships from the NHMRC. S. Ellis was supported by a New Investigator Grant from the NHMR

    Characterisation of age and polarity at onset in bipolar disorder

    Get PDF
    Background Studying phenotypic and genetic characteristics of age at onset (AAO) and polarity at onset (PAO) in bipolar disorder can provide new insights into disease pathology and facilitate the development of screening tools. Aims To examine the genetic architecture of AAO and PAO and their association with bipolar disorder disease characteristics. Method Genome-wide association studies (GWASs) and polygenic score (PGS) analyses of AAO (n = 12 977) and PAO (n = 6773) were conducted in patients with bipolar disorder from 34 cohorts and a replication sample (n = 2237). The association of onset with disease characteristics was investigated in two of these cohorts. Results Earlier AAO was associated with a higher probability of psychotic symptoms, suicidality, lower educational attainment, not living together and fewer episodes. Depressive onset correlated with suicidality and manic onset correlated with delusions and manic episodes. Systematic differences in AAO between cohorts and continents of origin were observed. This was also reflected in single-nucleotide variant-based heritability estimates, with higher heritabilities for stricter onset definitions. Increased PGS for autism spectrum disorder (β = −0.34 years, s.e. = 0.08), major depression (β = −0.34 years, s.e. = 0.08), schizophrenia (β = −0.39 years, s.e. = 0.08), and educational attainment (β = −0.31 years, s.e. = 0.08) were associated with an earlier AAO. The AAO GWAS identified one significant locus, but this finding did not replicate. Neither GWAS nor PGS analyses yielded significant associations with PAO. Conclusions AAO and PAO are associated with indicators of bipolar disorder severity. Individuals with an earlier onset show an increased polygenic liability for a broad spectrum of psychiatric traits. Systematic differences in AAO across cohorts, continents and phenotype definitions introduce significant heterogeneity, affecting analyses

    Dissecting the Shared Genetic Architecture of Suicide Attempt, Psychiatric Disorders, and Known Risk Factors

    Get PDF
    Background Suicide is a leading cause of death worldwide, and nonfatal suicide attempts, which occur far more frequently, are a major source of disability and social and economic burden. Both have substantial genetic etiology, which is partially shared and partially distinct from that of related psychiatric disorders. Methods We conducted a genome-wide association study (GWAS) of 29,782 suicide attempt (SA) cases and 519,961 controls in the International Suicide Genetics Consortium (ISGC). The GWAS of SA was conditioned on psychiatric disorders using GWAS summary statistics via multitrait-based conditional and joint analysis, to remove genetic effects on SA mediated by psychiatric disorders. We investigated the shared and divergent genetic architectures of SA, psychiatric disorders, and other known risk factors. Results Two loci reached genome-wide significance for SA: the major histocompatibility complex and an intergenic locus on chromosome 7, the latter of which remained associated with SA after conditioning on psychiatric disorders and replicated in an independent cohort from the Million Veteran Program. This locus has been implicated in risk-taking behavior, smoking, and insomnia. SA showed strong genetic correlation with psychiatric disorders, particularly major depression, and also with smoking, pain, risk-taking behavior, sleep disturbances, lower educational attainment, reproductive traits, lower socioeconomic status, and poorer general health. After conditioning on psychiatric disorders, the genetic correlations between SA and psychiatric disorders decreased, whereas those with nonpsychiatric traits remained largely unchanged. Conclusions Our results identify a risk locus that contributes more strongly to SA than other phenotypes and suggest a shared underlying biology between SA and known risk factors that is not mediated by psychiatric disorders.Peer reviewe
    corecore